Abstract

Review Article

Magnetohydrodynamic CNTs Casson Nanofluid and Radiative heat transfer in a Rotating Channels

Zahir Shah*, Abdullah Dawar, Saeed Islam, Muhammad Idress and Waris Khan

Published: 17 August, 2018 | Volume 1 - Issue 1 | Pages: 017-032

The main purpose of this investigation is to inspect the innovative conception of the magneto hydrodynamic (MHD) nanoparticles of single wall carbon nanotubes base on the fluids (water, engine oil, and ethylene, glycol and kerosene oil) between two rotating parallel plates. Carbon nanotubes (CNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena is deliberated subject to thermal radiation. Kerosene oil is taken as based nano fluids because of its unique attention due to their advanced thermal conductivities, exclusive features, and applications. The fluid flow is presumed in steady state. With the help of suitable resemblance variables, the fundamental leading equations have been converted to a set of differential equations. To obtain the solution of the modeled problem, the homotopic approach has been used. The influence of imbedded physical variables upon the velocities and temperature profiles are defined and deliberated through graphs. Moreover, for the several values of relevant variables, the skin fraction coefficient and local Nusselt number are tabulated. Plots have been presented in order to examine how the velocities and temperature profile get affected by various flow parameters.

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001002 Cite this Article Read Full Article PDF

Keywords:

SWCNTs; MWCNTs; Nanoparticles; Casson fluids; Thermal radiation; MHD; Parallel Plates; Rotating System; HAM

References

  1. Haq RU, Nadeem S, Khan ZH, Noor NFM. Convective heat transfer in MHD slips flow over a stretching surface in the presence of carbon nanotubes. Phys B Condens Matter. 2015; 457: 40-47. Ref.: https://tinyurl.com/ybhuvpbe
  2. Liu MS, Lin MCC, Te HI, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Comm in Heat and Mass Transfer. 2015; 32: 1202-1210; Ref.: https://tinyurl.com/ycqbu7c9
  3. Nadeem S, Lee C. Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res Lett. 2012; 7: 94. Ref.: https://tinyurl.com/ybp2rygp
  4. Ellahi R, Raza M, Vafai K. Series solutions of non-Newtonian nanofluids with Reynolds' model and Vogel's model by means of the homotopy analysis method. Math Comput Model. 2012; 55: 1876-1891. Ref.: https://tinyurl.com/y9tn4s3b
  5. Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanopar-ticles. J TaiwanInst Chem Eng. 2014; 45: 121-126. Ref.: https://tinyurl.com/y9hsb38v
  6. Nadeem S, Haq RU. MHD boundary layer flow of a nano fluid past a porous shrinking sheet with thermal radiation, J Aerospace Eng. 1943-5525. Ref.: https://tinyurl.com/y97mpwdv
  7. Nadeem S, Haq RU. Effect of thermal radiation for megnetohydrody- namic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci. 2013; 11: 32-40. Ref.: https://tinyurl.com/y96y4ddt
  8. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Int mech eng congress and exposition. 1995; 66: 99-105. Ref.: https://tinyurl.com/ycq6by6d
  9. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006; 128: 240-250. Ref.: https://tinyurl.com/yamfme6z
  10. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J of Molecular Liquids. 2017; 234: 364. Ref.: https://tinyurl.com/y9yxzq6f
  11. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J of Molecular Liquids. 2017; 229: 137-147. Ref.: https://tinyurl.com/y7jrhyy3
  12. Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J of Molecular Liquids. 2017; 231: 555-565. Ref.: https://tinyurl.com/y86kyh8f
  13. Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letters A. 2017; 381: 494-503. Ref.: https://tinyurl.com/ybllfpc2
  14. Sheikholeslami M. Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric TLB model based on GPU. Eur Phys J Plus. 2014; 129: 248.
  15. Sheikholeslami M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur Phys J Plus. 2016; 131: 413. Ref.: https://tinyurl.com/y99bt4sh
  16. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: A review. Int J of Heat and Mass Transfer. 2017; 115: 1203-1233. Ref.: https://tinyurl.com/ybahhr9g
  17. Sheikholeslami M, Rokni HB. Free convection of CuOeH2O nanofluid in a curved porous enclosure using mesoscopic approach. Int J of Heat and Mass Transfer. 2017; 42: 15393. Ref.: https://tinyurl.com/y8jetqnk
  18. Sheikholeslami M. Houman BR. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. International Journal of Heat and Mass Transfer. 2018; 118: 823-831. Ref.: https://tinyurl.com/y99vplln
  19. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. Journal of Magnetism and Magnetic Materials. 2015; 374: 36-43. Ref.: https://tinyurl.com/y8kd9kv6
  20. Elias MM, Miqdad M, Mahbubul IM, Saidur R, Kamalisarvestani M, et al. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transfer. 2013; 44: 93-99. Ref.: https://tinyurl.com/y9owqk5n
  21. Alfven H. Existence of electromagnetic-hydrodynamic waves. Nature. 1942; 150: 405-406. Ref.: https://tinyurl.com/y9x9jb2p
  22. Shah Z, Gul T, Khan AM, Ali I, Islam S. Effects of hall current on steady three dimensional non-newtonian nanofluid in a rotating frame with brownian motion and thermophoresis effects. J Eng Technol. 2017; 6: 280-296. Ref.: https://tinyurl.com/yb28z25t
  23. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018: 9: 1201-1214. Ref.: https://tinyurl.com/ybelycjt
  24. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects. Results Phys. 2018; 10: 36-45. Ref.: https://tinyurl.com/yc24emj2
  25. Casson NA. A flow equation for pigment oil suspension of printing ink type. In: Mill CC (ed) Rheology of dispersed system. Pergamon Press. Oxford. 1959.
  26. Mehmood Z, Mehmood R, Iqbal Z. Numerical Investigation of Micropolar Casson Fluid over a Stretching Sheet with Internal Heating. Commun Theor Phys. 2017; 67: 443-448. Ref.: https://tinyurl.com/y7xbr4rv
  27. Iqbal Z, Mehmood R, Ehtsham Azhar, Mehmood Z. Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm. Eur Phys J Plus. 2017; 132: 175. Ref.: https://tinyurl.com/yarhf5cl
  28. Megahe AM. Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Open Journal of Fluid Dynamic. 2016; 6: 303-320. Ref.: https://tinyurl.com/y85wxkph
  29. Abolbashari MH, Freidoonimehr N, Rashidi MM. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Advanced Powder Technology. 2016; 2: 542-552. Ref.: https://tinyurl.com/y7fxzbae
  30. Attia HA, Ahmed MES. Transient MHD couette flow of a Casson fluid between parallel plates with heat transfer. Ital J Pure Appl Math. 2010; 27: 19-38. Ref.: https://tinyurl.com/y8zbgv6h
  31. Mukhopadhyay S. Casson fluid flow and heat transfer over a nonlinearly stretching surface. Chin Phys B. 2013; 27: 074701-074705. Ref.: https://tinyurl.com/yc6purfo
  32. Qasim M, Noreen S. Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. Eur Phys J Plus. 2014; 7: 129-137. Ref.: https://tinyurl.com/y9gm47zv
  33. Maxwell. Electricity and magnetism. 3rd ed. Clarendon, Oxford. 1904.
  34. Casson NA. Flow Equation for Pigment Oil Suspensions of the Printing Ink Type, Rheology of Disperse Systems. Pergamon Press: New York. NY, USA. 1959; 84-104. Ref.: https://tinyurl.com/ycb3o3z4
  35. Hussanan A, Salleh MZ, Tahar RM, Khan I. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PLoS ONE. 2014; 9: e108763. Ref.: https://tinyurl.com/yaep7gfk
  36. Walicka A, Falicki J. Reynolds number effects in the flow of an electro rheological fluid of Casson type between fixed surface of revolution. Appl Math Comput. 2015; 250: 639-649. Ref.: https://tinyurl.com/y8yqa48z
  37. Hussain ST, Rizwan-ul-Haq, Khan ZH, Nadeem S. Water driven flow of carbon nanotubes in a rotating channel. Journal of Molecular Liquids. 2016; 214: 136-144. Ref.: https://tinyurl.com/ydbw4xpm
  38. Sheikholeslami M, Hatami D, Ganji DD. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. Journal of Molecular Liquids. 2014; 190: 112-120. Ref.: https://tinyurl.com/y8r7d73a
  39. Ishaq M, Ali G, Shah, Z, Islam S, Muhammad S. Entropy Generation on Nanofluid Thin Film Flow of Eyring–Powell Fluid with Thermal Radiation and MHD Effect on an Unsteady Porous Stretching Sheet. Entropy. 2018; 20: 412. Ref.: https://tinyurl.com/yb39tfy7
  40. Nasir S, Islam S, Gul T, Shah Z, Khan MA, et al. Three‑dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation. Applied Nano science. 2018; 8: 1361-1378. Ref.: https://tinyurl.com/y9bpe8v9
  41. Hammed H, Haneef M, Shah Z, Islam S, Khan W, et al. The Combined Magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid Flow over a Stretching Surface under the Influence of Variable Heat and Thermal Radiation. Appl Sci. 2018; 8: 160. Ref.: https://tinyurl.com/ycfnfqpn
  42. Ali A, M Sulaiman, S Islam, Z Shah, E Bonyah. Three-dimensional magnetohydrodynamic (MHD) flow of Maxwell nanofluid containing gyrotactic micro-organisms with heat source/sink. AIP Advances. 2018; 8: 085303. Ref.: https://tinyurl.com/yatjo8op

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Figure 1

Figure 7

Figure 1

Figure 8

Figure 1

Figure 9

Figure 1

Figure 10

Figure 1

Figure 11

Figure 1

Figure 12

Figure 1

Figure 13

Figure 1

Figure 14

Figure 1

Figure 15

Figure 1

Figure 16

Figure 1

Figure 17

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?