Abstract

Research Article

The Use of Computed Tomography to Quantify Renal Calculi Strain to Estimate Potential Symptomatic Incidents

Shatha F Murad*

Published: 21 May, 2024 | Volume 7 - Issue 1 | Pages: 059-065

This study investigates into the historical evolution and contemporary applications of Computed Tomography (CT) in renal stone estimation, with a focus on the innovative use of CT to quantify renallcalculiistrain for estimating potentiallsymptomatic incidents.
Historically, CT has played a pivotal role in diagnosing renal calculi, offering unparalleled sensitivity and specificity in detecting stones of varying composition and size. However, the clinical significance of renal calculi extends beyond mere detection, prompting researchers to explore novel approaches to predict symptomatic events associated with stone disease. This research aimed to determine the right way to classify asymptomatic radiographic calculi strain on computed tomography (CT) scans in Al-Hussein Teaching Hospital, Al-Muthanna, Iraq. A survey was made available to calculi formers who had a CT scan during asymptomatic after a calculi clinical assessment. A survey and a study of medical records revealed symptomatic calculi route incidents after a CT scan. The amount of calculus, the biggest calculi thickness, electronic total calculi size (TSV), and two-pronged calculus were measured radiographically and linked as predictors of calculi events. There were 55 calculi formers in the study, and 61% had a calculi event one year after the CT scan. The calculus number was (0–1, 2–3, 4–6, 7), the highest calculi diameter was (0–2, 3–4, 5–7, 8 mm), and 48% had bilateral calculus. The number of calculus per quartile had a danger ratio of 1.30 (p = 0.001), the largest calculi diameter had a hazard ratio of 1.26 (p  0.001), TSV had a hazard ratio of 1.38 (p = 0.001), and bilateral calculus had a hazard ratio of 1.80 (p = 0.001). Only TSV wass an unbiased measure offsymptomaticceventssin multivariable regression (HR = 1.35 per quartile, 
p = 0.01). TSV-related incidents were also unaffected by demographics, urinary chemistry, or calculi composition. A drastic rise in TSV between CT scans (> 31 mm3/year) expected additional eventssin the 49 patients with interim events (HR = 2.8, p = 0.05). For calculating calculi pressure on CT scan, automated TSV is more accurate for asymptomatic events than physical approaches.

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001085 Cite this Article Read Full Article PDF

Keywords:

Computed tomography; Renal calculus; Total calculi size; Hematuria; Flank pain

References

  1. Curhan GC. Epidemiology of stone disease. Urol Clin North Am. 2007 Aug;34(3):287-93. doi: 10.1016/j.ucl.2007.04.003. PMID: 17678980; PMCID: PMC2693870.
  2. Goldfarb DS, Arowojolu O. Metabolic evaluation of first-time and recurrent stone formers. Urol Clin North Am. 2013 Feb;40(1):13-20. doi: 10.1016/j.ucl.2012.09.007. Epub 2012 Oct 27. PMID: 23177631; PMCID: PMC4052537.
  3. Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010 Spring;12(2-3):e86-96. PMID: 20811557; PMCID: PMC2931286.
  4. Scales CD Jr, Smith AC, Hanley JM, Saigal CS; Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012 Jul;62(1):160-5. doi: 10.1016/j.eururo.2012.03.052. Epub 2012 Mar 31. PMID: 22498635; PMCID: PMC3362665.
  5. Glowacki LS, Beecroft ML, Cook RJ, Pahl D, Churchill DN. The natural history of asymptomatic urolithiasis. J Urol. 1992 Feb;147(2):319-21. doi: 10.1016/s0022-5347(17)37225-7. PMID: 1732583.
  6. Mezan SO, Jabbar AH, Hamzah MQ, Tuama AN, Hasan NN, Roslan MS, Agam MA. Synthesis, characterisation, and properties of polystyrene/SiO2 nanocomposite via sol-gel process. In: AIP Conference Proceedings. 2019 Aug; 2151(1):020034.
  7. Jabbar AH, Mezan SO, Al Absi SM. Assessment of anticholinesterase effect of polyvinylpyrrolidone/silver nanocomposite biosynthesized by Pandanus atrocarpus extract. Materials Today: Proceedings. 2020 Dec; https://doi.org/10.1016/j.matpr.2020.12.582.
  8. Al-Khateeb DSM, Al-Sharifi HK, Shkhair AI. Zinc Oxide Nanoparticles by Biological Eco-Friendly Synthesis Matrixes for Antibacterial Applications. 2009.
  9. Jabbar AH. Chemical synthesis and characterisation of silver nanoparticles induced biocompatibility for anticancer activity. Indian J Public Health Res Dev. 2018; 9(11):352-357.
  10. Vrtiska TJ. Quantitation of stone burden: imaging advances. Urol Res. 2005 Nov;33(5):398-402. doi: 10.1007/s00240-005-0490-6. Epub 2005 Nov 13. PMID: 16284880.
  11. Kang HW, Lee SK, Kim WT, Kim YJ, Yun SJ, Lee SC, Kim WJ. Natural history of asymptomatic renal stones and prediction of stone related events. J Urol. 2013 May;189(5):1740-6. doi: 10.1016/j.juro.2012.11.113. Epub 2012 Nov 28. PMID: 23201376.
  12. Kambadakone AR, Eisner BH, Catalano OA, Sahani DV. New and evolving concepts in the imaging and management of urolithiasis: urologists' perspective. Radiographics. 2010 May;30(3):603-23. doi: 10.1148/rg.303095146. PMID: 20462984.
  13. Al Absi SM, Jabbar AH, Mezan SO. An experimental test of the performance enhancement of a Savonius turbine by modifying the inner surface of a blade. Materials Today: Proceedings. 2020 Dec; https://doi.org/10.1016/j.matpr.2020.12.309.
  14. Jabbar AH, Mezan SO, Tuama AN, Hamzah MQ, Ameruddin ASB, Agam MA. Enhanced bioactivity of polystyrene-silver nanocomposite (PS/Ag NCs)-an antimicrobial study. 2019. doi: 10.1063/1.5124632.
  15. Coll DM, Varanelli MJ, Smith RC. Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. AJR Am J Roentgenol. 2002 Jan;178(1):101-3. doi: 10.2214/ajr.178.1.1780101. PMID: 11756098.
  16. Jabbar AH, AL-Janabi HSO, Hamzah MQ, Mezan SO, Tumah AN, Ameruddin ASB, Agam MA. Nanocomposite Assisted Green Synthesis of Polyvinylpyrrolidone-Silver Nanocomposite Using Pandanus atrocarpus Extract for Antiurolithiatic Activity. Syst Rev Pharm. 2020; 11(6):1436-1442.
  17. Miller OF, Kane CJ. Time to stone passage for observed ureteral calculi: a guide for patient education. J Urol. 1999 Sep;162(3 Pt 1):688-90; discussion 690-1. doi: 10.1097/00005392-199909010-00014. PMID: 10458343.
  18. Jabbar AH, AL-Janabi HSO, Hamzah MQ, Mezan SO, Tumah AN, Ameruddin ASB, Agam MA. Green synthesis and characterisation of silver nanoparticle (AgNPs) using pandanus atrocarpus extract. Int J Adv Sci Technol. 2020; 29(3).
  19. Parekattil SJ, Kumar U, Hegarty NJ, Williams C, Allen T, Teloken P, Leitão VA, Netto NR, Haber GP, Ballereau C, Villers A, Streem SB, White MD, Moran ME. External validation of outcome prediction model for ureteral/renal calculi. J Urol. 2006 Feb;175(2):575-9. doi: 10.1016/S0022-5347(05)00244-2. PMID: 16406999.
  20. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar 15;15(4):827-32. doi: 10.1016/0735-1097(90)90282-t. PMID: 2407762.
  21. Halliburton SS, Stillman AE, White RD. Noninvasive quantification of coronary artery calcification: methods and prognostic value. Cleve Clin J Med. 2002;69 Suppl 3:S6-11. doi: 10.3949/ccjm.69.suppl_3.s6. PMID: 12086233.
  22. Tuama AN, Abbas KH, Hamzah MQ, Jabbar AH, Agam MA. An Overview on Characterisation of Silver/Cuprous Oxide Nanometallic (Ag/Cu2O) As Visible Light Photocatalytic. Int J Adv Sci Technol. 2020;29(03):5008-5018.
  23. Mezan SO, Jabbar AH, Hamzah MQ, Tuama AN, Hasan NN, Agam MA. Synthesis and Characterisation of Zinc Sulphide (ZnS) Thin Film Nanoparticle for Optical Properties. J Global Pharma Technol. 2018;10(07):369-373.
  24. George A, Movahed A. Coronary artery calcium scores: current thinking and clinical applications. Open Cardiovasc Med J. 2008;2:87-92. doi: 10.2174/1874192400802010087. Epub 2008 Sep 18. PMID: 19337360; PMCID: PMC2627524.
  25. Burgher A, Beman M, Holtzman JL, Monga M. Progression of nephrolithiasis: long-term outcomes with observation of asymptomatic calculi. J Endourol. 2004 Aug;18(6):534-9. doi: 10.1089/end.2004.18.534. PMID: 15333216.
  26. Werness PG, Brown CM, Smith LH, Finlayson B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol. 1985 Dec;134(6):1242-4. doi: 10.1016/s0022-5347(17)47703-2. PMID: 3840540.
  27. Inci K, Sahin A, Islamoglu E, Eren MT, Bakkaloglu M, Ozen H. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J Urol. 2007 Jun;177(6):2189-92. doi: 10.1016/j.juro.2007.01.154. PMID: 17509315.
  28. Lorenz EC, Lieske JC, Vrtiska TJ, Krambeck AE, Li X, Bergstralh EJ, Melton LJ 3rd, Rule AD. Clinical characteristics of potential kidney donors with asymptomatic kidney stones. Nephrol Dial Transplant. 2011 Aug;26(8):2695-700. doi: 10.1093/ndt/gfq769. Epub 2011 Feb 1. PMID: 21285126; PMCID: PMC3145914.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?