Abstract

Research Article

A Study on Nuclear Physics Fission using the Relativistic Time-dependent Density Functional Theory Approach

Esraa Fareed Saeed*

Published: 18 June, 2024 | Volume 7 - Issue 1 | Pages: 073-079

A thorough knowledge of the stationary characteristics of the nuclei of atoms, their stimulation wavelengths, how they react to outside factors, and how they disintegrate is the aim of nuclear structural science. Although achieving these objectives within just one structure is difficult and prevents the existence of a nuclear "standard model," it is evident that radioactive Density Functional Theory (DFT) offers perhaps the broadest variety of applications to date. We attempt to place DFT in a larger perspective in this study by making frequent allusions to electrical DFT. We also provide a brief overview of the numerous uses and an explanation of the connections between beginning techniques and Useful Field Concepts (EFTs) in particular. The article tries to promote collaborations with different scientific fields while being published from a subjective and perhaps biased point of view.

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001088 Cite this Article Read Full Article PDF

Keywords:

Useful field concepts; Standard model; Relativistic

References

  1. Ren ZX, Zhao PW. Toward a bridge between relativistic and nonrelativistic density functional theories for nuclei. Phys Rev C. 2020 Jan 21; 102(2):021301(R). doi: 10.1103/PhysRevC.102.021301.
  2. Shen S, Liang H, Long WH, Meng J, Ring P. Towards an ab initio covariant density functional theory for nuclear structure. Prog Part Nucl Phys. 2019 Dec; 109:103713. doi: 10.1016/j.ppnp.2019.103713.
  3. Ren Z, Zhao P, Meng J. Dynamics of the linear-chain alpha cluster in microscopic time-dependent relativistic density functional theory. Phys Lett B. 2020 Dec; 801:135194. doi: 10.1016/j.physletb.2019.135194.
  4. Xia X, Lim Y, Zhao P, Liang H, Qu X, Chen Y, Liu H, Zhang L, Zhang S, Kim Y, Meng J. The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. At Data Nucl Data Table 2018 Jul; 121-122:1. doi: 10.1016/j.adt.2018.04.001.
  5. Wang Z, Zhao Q, Liang H, Long WH. Quantitative analysis of tensor effects in the relativistic Hartree-Fock theory. Phys Rev C. 2018 Sep 25; 98(3):034313. doi: 10.1103/PhysRevC.98.034313.
  6. Ren ZX, Zhao PW, Meng J. Phys Rev C. 2022; 105. doi: 10.1103/PhysRevC.105.L011301.
  7. Ren ZX, Vretenar D, Nikšić T, Zhao PW, Zhao J, Meng J. Dynamical Synthesis of ^{4}He in the Scission Phase of Nuclear Fission. Phys Rev Lett. 2022 Apr 29; 128(17):172501. doi: 10.1103/PhysRevLett.128.172501. PMID: 35570452.
  8. Thoennessen M. Discovery of nuclides project. NSCL. Michigan State University. 2018. https://people.nscl.msu.edu/thoennes/isotopes/.
  9. Hatsuda T. Lattice quantum chromodynamics and baryon-baryon interactions. Front Phys. 2018;13:132105.
  10. Khan DA, Khan N, Ilyas N, Gul MT. Mechanisms of Stress Tolerance in Halophytic Plants. The Metascience. 2024; 2(2):9-16.
  11. Roca-Maza X, Paar N. Nuclear equation of state from ground and collective excited state properties of nuclei. Prog Part Nucl Phys. 2018;101:96-176.
  12. Ibrar M, Rahim K, Ullah S, Gul MT. A Brief Overview On The Highly Medicinal Plant Genus Gomphrena. The Metascience. 2024;2(1):84-91.
  13. Khan N, Ilyas N, Gul MT. Mycorrhizal Associations' Significance for Plant Nutrition. The Metascience. 2024;2(2):1-8.
  14. Ullah I, Khan N, Gul MT. Plants' Physiological Reactions to Climate Change. The Metascience. 2024;2(1):76-83.
  15. Shen S, Liang H, Long WH, et al. Towards an ab initio covariant density functional theory for nuclear structure. Prog Part Nucl Phys. 2019;109:103713.
  16. Lonardoni D, Carlson J, Gandolfi S, Lynn JE, Schmidt KE, Schwenk A, Wang XB. Properties of Nuclei up to A=16 using Local Chiral Interactions. Phys Rev Lett. 2018 Mar 23;120(12):122502. doi: 10.1103/PhysRevLett.120.122502. PMID: 29694099.
  17. Drischler C, Hebeler K, Schwenk A. Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation. Phys Rev Lett. 2019 Feb 1;122(4):042501. doi: 10.1103/PhysRevLett.122.042501. PMID: 30768314.
  18. Freer M, Horiuchi H, Kanada-En’yo Y, et al. Microscopic clustering in light nuclei. Rev Mod Phys. 2018 Aug; 90:035004.
  19. Garg U, Colò G. The compression-mode giant resonances and nuclear incompressibility. Prog Part Nucl Phys. 2018; 101:55–95.
  20. JM P, Chamel N, Potekhin AY, et al. Unified equations of state for cold non-accreting neutron stars with brussels-montreal functionals i. role of symmetry energy. Mon Not R Astron Soc. 2018; 481(09):2994–3026.
  21. Horowitz CJ, Arcones A, Côté B, et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J Phys G Nucl Part Phys. 2019; 46:083001.
  22. urnstahl RJ. Turning the nuclear energy density functional method into a proper effective field theory: reflections; 2019. https://arxiv.org/abs/1906.00833.
  23. Schunck N, ed. Energy Density Functional Methods for Atomic Nuclei. Bristol: IoP Publishing; 2019.
  24. Sheikh JA, Dobaczewski J, Ring P, Robledo LM, Yannouleas C. Symmetry restoration in mean-field approaches. J Phys G: Nucl Part Phys. 2021 Dec;48(12):123001.
  25. Ren ZX, Zhao PW. Toward a bridge between relativistic and nonrelativistic density functional theories for nuclei. Phys Rev C. 2020 Aug 7;102:021301(R).
  26. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964 Nov;136.
  27. Chabanat E, Bonche P, Haensel P, et al. A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities. Nucl Phys A. 1998;635:231.
  28. Machleidt R, Sammarruca F. Can chiral EFT give us satisfaction? Eur Phys J A. 2020 Mar;56(3):56-95.
  29. Nazarewicz W. The limits of nuclear mass and charge. Nat Phys. 2018 Jun;14(6):537-541.
  30. Hebeler K. Three-nucleon forces: implementation and applications to atomic nuclei and dense matter. Phys Rep. 2021 Aug;890:1-116.
  31. Kortelainen M, Lesinski T, Moré J, et al. Nuclear energy density optimization. Phys Rev C. 2010 Aug 16;82:024313.
  32. Kanbar HAK. Social Networking sites and their role in publishing Scientific knowledge. 2022;23(1,2):25-52.
  33. Kanber HAK, Al-Taai SHH, al-Dulaimi WAM. The role of digital content systems used in managing Arab academic scientific journals: An analytical study. Period Eng Nat Sci. 11(2):232-247.
  34. Fayans SA. Kurchatov Institute Russian Science Center, Moscow, Russia. Available from: https://repo.library.stonybrook.edu/xmlui/bitstream/handle/11401/69719/JTPv68i3final.pdf?sequence=2
  35. Zhao PW. Multiple chirality in nuclear rotation: A microscopic view. Phys Lett B. 2017 Jan 10;773:1.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?