Abstract

Short Communication

Catalytic Oxidation-like Nuclear Nano-fusion; Fractal Involving of Room Temperature Magnetically Induced μ-Catalyzed Fusion

Widastra Hidajatullah Maksoed*

Published: 24 July, 2024 | Volume 7 - Issue 2 | Pages: 119-121

The nuclear fusion reaction can be catalyzed in a suitable fusion fuel by muons (heavy electrons). “For the fractal relations, ranging from DNA knots to solar neutrino flux signals”, ever derived of scale-invariant properties distinguished between classical invariant theory & quantum invariant theory subfactors. Accompanying isomorphic & Connes FusionTensor Product retrieved to μ-catalyzed fusion where surroundings of room temperature fusion driven by the balance in mtDNA fusion & fission. On behalf of the nanometer dimension of the radius of heavy electrons & wavelength of UV-light, it assumed that muons can be produced by oxidation-like decay when UV-light impinging water.

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001094 Cite this Article Read Full Article PDF

Keywords:

Catalytic nano-fusion: Connes fusion tensor product; mtDNA; Bio-nanohybrid

References

  1. Eliezer S, Henis Z. Muon-catalyzed Fusion – An Energy Production Perspective. Fusion Reactors. 1994 Feb 18;26:46-73. Available from: https://doi.org/10.13182/FST94-A30300.
  2. Conlon PA. Fields, Fractals & Flares. Proceedings of the Physical Society of France. 2015. Available from: https://meetings.aps.org/Meeting/PSF15/Session/D1.31.
  3. Case LC. Catalytic fusion of deuterium to He-4. Salt Lake City; 1998. Available from: https://lenr-canr.org/acrobat/CaseLCcatalyticf.pdf.
  4. Palcoux S. Neveu-Schwarz and operators algebras III: Subfactors and Connes fusion. ArXiv. 2010;54. Available from: https://doi.org/10.48550/arXiv.1010.0076.
  5. Thom A. A Remark about Connes Fusion Tensor Product. Operator Algebras. ArXiv. 2006. Available from: https://doi.org/10.48550/arXiv.math/0601045.
  6. Mart T. Electromagnetic production of ???????? on the nucleon near threshold. Phys Rev D. 2014;90:065202. Available from: https://journals.aps.org/prc/abstract/10.1103/PhysRevC.90.065202.
  7. Williams PA. Retinal Neuronal Remodelling in a Model of Optic Atrophy. Cardiff University; 2011. Available from: https://orca.cardiff.ac.uk/id/eprint/20050/1/Williams_-_Pete_-_Thesis.pdf
  8. Ruiz-Hitzky E, Ariga K, Lvov YM. Bio‐inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications. Wiley; 2007;521. Available from: https://www.wiley.com/en-us/Bio-inorganic+Hybrid+Nanomaterials%3A+Strategies%2C+Synthesis%2C+Characterization+and+Applications-p-9783527621453
  9. Macek WM. Fractals & Multifractals.
  10. Tel T. Fractal, Multifractal & Thermodynamics. Z Naturforsch A. 1988. Available from: https://doi.org/10.1515/zna-1988-1221.
  11. Sabhapandit S. Hysteresis & Avalanche in Random Field Ising Model. Statistical Mechanics. 2012;74. Available from: https://doi.org/10.48550/arXiv.cond-mat/0209569
  12. Nakajima H, Yoshioka K. Lectures on Instanton Counting. 2003;60. Available from: https://doi.org/10.48550/arXiv.math/0311058
  13. Hayashi H, Kim HC, Nishinaka T. Topological strings & 5d TN partition functions. 2014;79. Available from: https://doi.org/10.48550/arXiv.1310.3854
  14. Szendroi B. Nekrasov’s Partition Function & Redefined Donaldson Theory: The Rank One Case. 2012;8:16. Available from: https://doi.org/10.3842/SIGMA.2012.088
  15. Prokop A. Recombinant DNA Technology & Applications. McGraw-Hill Inc; 1991:79.
  16. Wannier GH. Statistical Physics. Dover, New York; 1987. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2239542
  17. Jones S. Muon-catalyzed fusion revisited. CERN Courier. Dec 1984.
  18. Goswami A. Quantum Mechanics.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?