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Abstract

The topic of this paper is to describe the 3-D current density in the windings of a 3-D coil, which 
ϐills the volume between two coaxial cylinders at a precisely deϐined distance from each other, and 
which serves to generate a magnetic ϐield gradient in the center of the cylinder axis. The 3-D current 
density is considered an unknown input quantity, which is calculated from the known gradient 
magnetic ϐield output. It is an inverse problem in mathematics, where the direct problems are the 
calculation of unknown output quantities based on known input quantities. Fourier series expansion 
methods in the context of cylindrical coordinates were used to describe the 3-D current density. 
In that case, Bessel functions are used as development components. The current densities, at each 
point in space, were lined up to represent current lines. Each power line is associated with a coil 
winding through which a current of a certain strength ϐlows. After that, the principle of discretization 
of coil windings was applied. Each winding is divided into a large number of elementary segments 
that were considered as current elements, which create, based on Bio-Savar's law, an elementary 
magnetic ϐield. In this way, the total, continuous magnetic ϐield is broken into many elementary 
components, which come from different current elements. An important result of this process is 
that each current element can be controlled independently by a current source. This means that the 
output magnetic ϐield of the gradient can be controlled by current sources, which are the input sizes, 
and this is what is at the core of the topic of this paper.

Introduction
The problem of realizing the gradient magnetic ϐield is 

crucial for the operation of the MR scanner. Considerable work 
has been devoted to the design of gradient coils and various 
methods for the design of these coils. An example of those 
works is [1], which gives an overview of the methods for the 
design of gradient coils. In paper [2], an approach to the design 
of planar gradient coils is presented. A technique is provided 
that allows gradient ϐield corrections. These corrections are 
made by changes in the wire paths made by the coil windings. 
This is why this method is called the path correction method. 
In the work [3] an optimal saddle coil conϐiguration was 
proposed as a function of the dimensions of the region of 
interest, taking into account uniformity and sensitivity. To 
evaluate the uniformity of the magnetic ϐield, three quantities 
were analyzed: nonuniformity, peak-to-peak homogeneity, 
and relative uniformity. Paper [4] discusses coil design by 
classifying it into two groups: discrete, analytical coil design, 
and distributed coils. In the work [5], the gradient magnetic 
ϐield generated by the conventional transverse coil (Golay 
coil) was mapped. The calculation algorithm of the generated 
magnetic ϐield was written in C-programming language, 
compiled by the GNU compiler collection, and was based on 
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a forward analytical approach using the Biot-Savarot law. 
Paper [6] deals with the problem of overcoming the design of 
Golay coils and the development of so-called ϐingerprint coils 
for x- and y-gradients. In paper [7], a simple modeling based 
on series Fourier decomposition was proposed, which allows 
determining the distribution of the electric conductor to make 
the magnetic ϐield homogeneous. The method is valid for ϐlat 
and axisymmetric geometries. In the work [8] an innovative 
design method for highly uniform magnetic ϐield coils using a 
Particle Swarm Optimization (PSO) algorithm was proposed. 
A PSO algorithm was employed to avoid obtaining parameters 
with a large number of decimal places. The paper [9] presents 
an intuitive open-source code collection for deriving the 
stream function from the current density on simple geometry 
surfaces.

The reason that led to the study of this problem came 
from the text "Gradient Coils" by Allen D. Elster (https://
www.mriquestions.com/gradient-coils.html). Allen D. Elster's 
account is interesting but not clear enough. It is superϐicial. It 
does not sufϐiciently depict the essential complexity of creating 
a gradient magnetic ϐield. It is shown that the solutions he 
presents have been overcome.

In this paper, the method of inverse solution to the problem 

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.ijpra.1001090&domain=pdf&date_stamp=2024-06-28
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of magnet gradient generation is presented. Based on the 
known output, it is shown how to realize the required input, 
which creates the required, target output. The target output 
is the desired magnetic ϐield gradient, and the input is the 3D 
coils through which the 3D current density ϐlows, creating the 
target output.

The gradient coil system is discretized so that each discrete 
element creates its own, discrete, elemental magnetic ϐield at 
a chosen point in space, based on Bio-Savar's law. The total 
magnetic ϐield, at that chosen point, is equal to the sum of 
the elementary ϐields at that point, produced by the discrete 
elements of the gradient coils.

Current density at a point in space

Current density at an arbitrary point in space is deϐined 
as the amount of current that passes through that point at 
a given moment. At an arbitrary point in space (r′,θ′,z′), the 
magnitude of the current density vector J(r′,θ′,z′) is expressed 
in the following way:

∆Q ‒ charge of one particle,

N′ ‒ particle density volume, (number of particles in unit 
volume)

ρ = ∆q∙N′ ‒ volumetric charge density

 _______________________

dq = ∆Q∙N′∙dv

dv = ∆S∙dl

dl = v∙dt

dq = ∆Q∙N′∙v∙dt/:dt

∆i = (dq/dt) = ∆Q∙N′∙v∙∆s/:∆s

J = (∆i/∆s) = ∆Q∙N′∙v

∆Q∙N′ = ρ

J = ρ∙v

The current density vector J is proportional to the speed of 
electricity movement v. The electric current is a consequence 
of the action of the electric ϐield E. So, there is a proportionality 
(v ~ E) between the vector v and the vector E. It follows from 
this:

J = ϭE [J(r′,θ′,z′) = ϭE(r′,θ′,z′)]

ϭ is the conductivity of the medium in which the current is 
established due to the ϐield E.

This is Ohm's law in differential form. The current density 
at a point in space is proportional to the ϐield strength at that 
point [10].

Model 3‒D coil gradient

A 3-D gradient coil is deϐined to exist within the volume 
between two cylinders of length 2L, with inner radius a and 
outer radius b, lying coaxially with the z-axis and centered 
at z₌0. In this volume, there is an unknown current density 
vector J(r′,θ′,z′) that needs to be determined to induce the 
desired target magnetic ϐield in the inner region. The inner 
target region is a spherical volume of the appropriate diameter 
(DSV ‒ Diameter of Sphere Volume) with a center at zero and 
radius c.

The outer target region is the surface of a cylinder of 
radius d>b, length 2L, on which the induced ϐield should be 
minimized. The three-dimensional current density in the 
3-D gradient coil model J(r′,θ′,z′) is considered as a complex 
quantity. Therefore, it is decomposed into the Fourier series 
[11], into its "spectral components", to facilitate its analysis. 
The point (r′,θ′,z′) is the source point in the current density 
volume space.

To enable the search for a general solution, it was assumed 
that the components of the current density vector are: periodic 
in θ from -π to π, periodic in z′ from ‒L to 3L, and periodic 
in r′ from a to (2b-a). Additional current density constraints 
include a zero radial component at the inner and outer coil 
surfaces J(a′,θ′,z′)= J(b′,θ′,z′)=0 and a zero axial component 
at the ends Jz(r′, θ′,‒L)=Jz(r′,θ′, L)=0. In addition to the above, 
three components of the current density vector satisfy the 
time-independent continuity equations: ∙∙∙∙ ∇J=0 [12].

The continuity equation in electromagnetics expresses the 
law of conservation of electric charge and relates changes in 
the electric charge density to the divergence of the electric 
current density. The general forms of the continuity equation 
are:

∇∙J = - (∂ρ/∂t)

J – current density (vector) per unit area,

ρ ‒ electric charge density (scalar) per unit volume,

(∂ρ/∂t) ‒ change in electric load density over time,

∇∙J ‒ current density divergence.

The continuity equation states that the change in electric 
charge density in a volume over time must be equal to the 
negative value of the divergence of the current density in that 
volume. In other words, if the load density changes, it must be 
due to the current entering or leaving that volume.

When the equation of continuity in electromagnetism is 
equal to zero, it means that there is no change in the electric 
charge density in time at a certain place, that is, the charge 
density is constant in time. When the continuity equation is 
zero, it means that there is no net ϐlow of charge within that 
region. The amount of charge remains constant over time. 
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This is the case, for example, in situations where the current 
density is distributed evenly [11,12] (Figure 1).

The complex components of the current density vector 
J(r′,θ′,z′) were chosen to be:

 
 

J r , , z  1z 1 1

cos sin A cos  B sinmnk mnk

sin sin C co

( )
[ ] [ ]

2
( ) (

s D sinmnk mnk
)

[ [ ]
2

N M K
n m

k r a n z L

b a L
k r a n z L

b a L

k

m

m




 



 
 

   
 




          

 

 


  

   


 
    

 
     

 J r , , z  1r 1 1

sin cos F cos  G sinmnk mnk

sin

( ) ( )
[ [ ]

2

sin P cos Q sinmnk
( ) ( )

mn2 k[ [

 

 



 

 

  
 




          

    

 
 

    




 
    

 
     

N M K
n

k r a n z L

b a L
k r a n z L

b a

m

L

m k

m

1

( )( ) ( )[ [ ]

J (r , , z ) 11 1

sin cos cos

F sin  G cosmnk mnk

sin cos

2

sin
( ) ( )( )

2

N M K
n m k m

n z Lk r a k r k r a
b a b a b a L

k r k r a n z Lk r a
b a b a b a L

m

  

  



 

           

  
  

  

    



    
  

  

    
 


  

 

  
   
      

P cos Q sin  mnk mnk

r cos[ ] cos

A sin B cos  mnk mnk

r sin cos

C sin D cosm

( ) ( )

2 2

nk m

( ) (

2 2

n

)

k

k r a n n z L

b a L L

k r a n n z L

b a L L

m

m m

m m

  



 

 

 

 

  




  





   

  

    

   

   

 
 
 




  
 

 
   

  
    
       
  

















The equations for Jz(r՚,θ՚,zʹ), Jr(r՚,θ՚,zʹ) and Jθ(r՚,θ՚,zʹ) include 
eight sets of unknown 3-D current density coefϐicients: Amnk, 
Bmnk, Cmnk, Dmnk, Fmnk, Gmnk, Pmnk and Qmnk (m=1:M, n=1:N, k=1:K), 
which should be determined [13].

Fourier transformation

The Fourier transformation is based on the idea that the 
entire space with "normal axes" is transformed into a space 
in which the new orthogonal axes are sine and cosine waves 
and their higher harmonics. The signal, which we transform, 
is only one point (local vector), and the values   on each axis 
are the amplitudes of each harmonic individually (A0, A1, ... 
AN) [14].

Applying Euler's identity formula: ejⱷ = cosⱷ + i sinⱷ, 

expressions are obtained:

       ix ix ix ixcos x  e  e  i 
1 1

s
2 2

in x  e –  e
i
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e is Euler's number - the basis of the natural algorithm, i is 
an imaginary unit, and x is an angle expressed in radians.

An arbitrary periodic continuous function is expressed by 
the sum of trigonometric functions (sine and cosine). As a ϐinal 
expression, the deϐinition of the Fourier series is obtained:

  in tf t  eN
n N Cnn N

   [14]

Fouries‒bessel series

Bessel functions are solutions of the Bessel differential 
equation:

x2(dy2/dx2) + x(dy/dx) + (x2‒υ2)y=0

υ = const, an arbitrary real or complex number, is called 
the order of the Bessel function [15].

Bessel functions are also called cylindrical functions. The 
curves of these functions resemble sinusoids whose amplitude 
decreases [16].

Cylindrical functions of the ϐirst kind are solutions 
of Bessel's differential equation, which are ϐinite in the 
coordinate origin (x=0), for negative integer values   υ, and are 
inϐinite when x tends to zero, for negative non-integer values   
υ [16].

Cylindrical functions of arbitrary order, if υ is not an 
integer, have a general solution

c1Jυ + c‒1 J‒υ [17,18]

Figure 1: The model used to describe 3-D gradient coils: a cylindrical volume with 
inner radius a, outer radius b, and length 2L, lying coaxially with the z-axis, contains a 
3-D current density J(r′,θ′,z′). There is a spherical inner target region (DSV) of radius c, 
centered at the starting point, the intersection of the coordinate axes, which encloses 
the desired gradient target ϐield BTz, and an outer cylindrical region of radius d and 
length 2L, where the zero ϐield is desired. – Creative Commons License CC BY ‒ NC ‒ 
SA 4.0 [13].
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J±υ are the so-called cylindrical functions of the ϐirst kind.

Cylindrical functions of the ϐirst kind have the form:
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Γ is the Gamma function, the transcendental function Γ(z) 
that expands the values   of the factorial z! to any complex 
number. It is written Γ(z)=(z‒1)! [19,20].

Cylindrical functions of the second kind have the form:
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The function f is expressed as a string:

   ( )f x  c x ,  0 x am mm 1
J 
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f is a function given in the interval (0, a), Jυ is a cylindrical 
function of order υ > − 1/2, and xm(υ) are positive zeros of Jυ 
taken in increasing order. The coefϐicients cm have the values   
given by the expression in [21].

Bio-savar's law [22]

Bio-Savar's law gives a quantitative relationship between 
the electric current and the magnetic ϐield B produced by that 
current. The current in the loop produces magnetic ϐield lines 
B, and these magnetic ϐield lines form loops around the current 
in the loop. In differential form, Bio-Savar's law expresses the 
partial contribution dB of a small segment of the conductor 
to the total ϐield B of the current in the conductor. For a 
conductor segment of length dl and orientation dl, through 
which current I ϐlow, Bio-Savar's law has the form:

4









dB

i

r r

μ dlx

μ is the permeability of the free space, I – current measured 
in amperes, dl – differential length vector, Idl is the differential 
current element, ȓ ‒ unit vector of the distance from the 
current element to the ϐield point, r ‒ the distance from the 
current differential element to the ϐield point.

The equation expressing Bio-Savar's law is illustrated, in 
Figure 2, for a small segment of wire through which current 
ϐlows. A small segment of wire lies at the origin along the x-axis. 
Comparing dB at points 1 and 2 shows an inverse quadratic 
dependence of ϐield size with distance. Vectors 1, 3, and 4, 
which are all equidistant from dl, show the direction of dB in 
a circle around the wire. In position 1, the ϐield contribution 
dB1 is vertical to the direction of the current and the vector 
r1. Plots 1, 5, 6, and 7 illustrate the angular dependence of the 
magnitude of dB at a point. The magnitude dB varies as the 
sine of the angle between dl and ȓ. (ȓ is in the direction from 
dl to point.) It is largest at 900 to dl and decreases to zero for 
locations in line with dl. The magnetic ϐield of the current in 
the loop or coil is obtained by summing the individual partial 

contributions of all circuit segments, taking into account the 
vector nature of the ϐield.

The expression for the magnetic ϐield B at a distance r from 
a long straight wire with a current I is:

è
2



B
I
r

θ is the only vector that points in a circle around the wire. 
So, the value of the magnetic ϐield B at a point nearby is directly 
proportional to the value of the current I, and inversely 
proportional to the distance r from the wire to the given point.

The magnetic induction vector B(r) at the ϐield point (r), 
induced by the current density J(r՚) existing at the source 
points (r՚) contained in the volume V', is given by Bio-Savar's 
law through conducting volumes [18] (Figure 3).

Each coil winding, individually, is divided into elementary 
segments. Each of these segments can be controlled, 
independently of the others, by a source of electric current. 
In this way, the continuous magnetic ϐield, at each point, is 
broken into components. Each of these components is a sum of 
elementary magnetic ϐields created by elementary segments 
of the coil.

rʹᴡq(xʹᴡq, yʹwq, zʹwq) ‒ position vector for each elemental 
segment of the coil

w ‒ ordinal number of coil windings,

Figure 1: A magnetic ϐield produced by a small section of wire with an electric current 
I. ‒ Creative Commons License CC BY – NC ‒ SA 4.0 [18]

Figure 3: Elementary magnetic ϐield dB, at a point in space r, is induced by the 
elementary current density J(r՚) that exists at the source point r՚ in the volume V՚.
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Are the radii Rwq calculated individually for each segment 
or is the average value of the radius of all segments of one coil 
estimated?

The axial component of the magnetic ϐield, calculated 
based on Bio-Savar's law, is expressed, using currents Jr and Jz, 
in cylindrical coordinates, as:

Bz=(μ0/4π)=(Jr∙r՚/r՚2)∙dr՚∙dθ∙dz + (μ0/4π)=(Jz∙r՚/r՚2)∙dr՚dθ՚∙dz

The ϐirst integral is the contribution of the radial current 
component Jr, and the second integral is the contribution of 
the axial current component Jz. Both integrals integrate over 
the entire volume containing the current. [19]

Discussion
The ϐirst signiϐicant contribution of this paper is the 

reminder that the current density at an arbitrary point in 
space is proportional to the strength of the electric ϐield at that 
point. This leads us to recall that the electric ϐield is created 
by an external source of electricity supply. In this way, we 
become aware of the important fact that the phenomenon 
we are considering in this paper originates from an external 
source of electric current, which is necessary for the existence 
of the considered phenomenon.

In the three-dimensional model of the gradient coil, in 
Figure 1, the starting point is the output data, that is, the 
resultant gradient of the magnetic ϐield, which should be 
obtained. The goal is to discover the causal relationship, 
that is, the input data that led to those results, the output 
data. It is an inverse problem in mathematics, which is, in 
principle, more complex than the direct problem. In this 
case, information that is not directly available through 
measurement or observation is reconstructed. In this context, 
we highlighted the notion of cylindrical functions, which are 
used in problems with cylindrical symmetry. Such a problem 
is considered in this paper. The idea is to express the functions 

q ‒ sequence number of the current segment,

r(x,y,z) ‒ position vector for all points of interest.

For a discretized system of W windings of a coil, such that a 
current Iw ϐlows through each discrete segment (w=1:W), and 
the position of the segment is described by the coordinates 
(xʹᴡq, yʹwq, zʹwq) (q=1:Qw), the magnetic induction vector 
becomes expression:

  3[ x(w
4

) / ]qS r Rwq wq



   B r r

R3
wq = [(xʹ

wq‒x)2 + (yʹwq‒y)2 + (zʹ
wq ‒z)]1/2

Each winding of the coil individually represents a current 
line, and the elemental segment of the coil is a discretized 
segment of the current line (Figure 4).

ΔSʹwq = Δ xʹ
wq ∙ ex + Δ yʹwq ∙ey+ Δ zʹ

wq∙ez

ΔS'wq ‒ discretized current line segment,

ex, ey, and ez are unit vectors along the usual axes of the 
Cartesian coordinate system,

xʹwq=(xʹwq+1‒xwq), (Δy՚wq=yʹwq+1‒ywq), (Δz՚wq=Δzʹwq+1‒

Δzʹwq) are the values   of individual elementary components.

For this discretized system of W coils, each divided into q 
segments, Bio-Savar's law takes the form:

w=1, q€[1,Q1];

x( r)μ x( r) x( r) 1Q1 1Q10 11 11 12 12{ }3 3 3
11 12 1Q14

         
     

SS S rr r

R R R

R11=[(x11
՚‒x)2+(y11

՚‒y)2+(z11
՚‒z)]1/2 + ∙∙∙

w=2, q€[1,Q2] 

x( r)μ x( r) x( r) 2Q2 2Q20 21 21 22 22{ }3 3 3
21 22 2Q24

         
     

SS S rr r

R R R

R21=[(x21
՚‒x)2+(y21

՚‒y)2+(z21
՚‒z)]1/2 + ∙∙∙

w=3, q€[1,Q3]; 

Figure 4: Vector representation of the discretized element of the current line S'wq.
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of the electromagnetic ϐield in a cylindrical structure in the 
form of a Fourier-Bessel series.

The known output data, the induced magnetic ϐield in 
the target, spherical volume, led to, in electromagnetics, the 
logical assumption that the cause of that induced magnetic 
ϐield, current, is a complex three-dimensional current density, 
characterized by a vector at each source point, described 
by cylindrical coordinates, J(r՚,θ՚,z՚). Finding the assumed 
complex current density in this way required the introduction 
of additional restrictions on it, to facilitate solving the problem.

In the work [11], the authors assumed very complex 
expressions for three cylindrical components of the current 
density, which contain eight sets of unknown coefϐicients, 
which need to be determined.

The complexity of the representation of the current 
density components was considered by decomposing them 
into constituent components in the form of the Fourier series 
in the context of cylindrical coordinates. In this context, the 
components of the Fourier series are Bessel functions, and the 
Fourier coefϐicients determine the share of each term in the 
development of the function. Specifying the development of 
the current density function in the Fourier series using Bessel 
functions is a very interesting and signiϐicant contribution of 
this paper.

The information about the source point in space, 
characterized by the current density vector J(r՚, θ՚, z՚), led 
us to consider the model from Figure 1 and the cylindrical 
volume bounded by radii a and b, as a set of a huge number of 
such source points, connected in series ‒ current lines. Each 
current line has its conductor, a coil, through which it ϐlows. 
A complete coil consists of W coils, and each of these coils is 
divided into q segments. In this way, the physical equivalents 
of the original points were created. The coil is visualized so that 
it is considered a set of different, unrelated elements. Each of 
these elements, based on Bio-Savar's law, creates its magnetic 
ϐield. The total magnetic ϐield is the sum of all elementary ϐields 
created in this way. The meaning of this entire procedure is 
that each of the resulting elements, the segments of the coil, can 
be controlled separately, with a separate power supply. In this 
way, the magnetic ϐield, or magnetic induction, at any point in 
space, is controlled by a special source of electric current. This 
is also the solution to our inverse problem, which we consider 
in this paper: we received input data, electric current sources, 
which create the desired output, and a magnetic ϐield within 
the central spherical region of a cylindrical 3-D gradient coil. 
It is a theoretical solution, based on which a practical solution 
is realized.

The key factors affecting the distribution of the magnetic 
ϐield generated by the 3D gradient of the coil are the geometric 
shape and size of the coil, the total number of coils and their 
arrangement (coil density), as well as the strength of the 

current ϐlowing through the coil. Induced currents in the 
conducting components of the MRI system can distort the 
gradient ϐield. This effect is mitigated by using actively shielded 
gradient circuits and eddy current compensation techniques. 
The magnetic ϐield distribution generated by a 3D gradient coil 
is a complex interaction of design choices, material properties, 
external inϐluences, and operating conditions.

The optimal 3D current density distribution should allow 
the gradient coil to achieve high performance without high 
power consumption and heat generation. High performance 
means that the generated magnetic ϐields are linear and 
predictable.

This paper sets the framework within which the Bio-Savar 
technique and optimization method are considered, which 
involves using the Bio-Savar law to directly calculate the 
magnetic ϐield produced by a given current distribution. By 
iteratively adjusting the current distribution and recalculating 
the resulting ϐield, the optimization process can ϐine-tune the 
coil design to achieve the desired ϐield characteristics [23].

Conclusion
The contribution of this paper is particularly signiϐicant to 

the author's published results because it provides a completely 
different approach for the design and implementation of MR 
scanner gradient coils. In the original papers, Maxwell's pair 
of coils and saddle‒Golay coils were speciϐied for generating a 
gradient magnetic ϐield. Such an approach to creating magnetic 
gradients is considered outdated. This paper highlights that.

A signiϐicant contribution of the work is the description of 
the mathematical modeling of the phenomenon of the creation 
of the volumetric current density, which produces the target 
magnetic gradient. As a consequence, a discretized gradient 
coil winding system is described, in which each discretized 
element produces, based on Bio-Savar's law, a discretized 
magnetic gradient element, and the total gradient is the sum 
of all those elementary gradients.

It is puzzling how the authors in [11] assumed the 
expressions for the cylindrical current components Jz(r՚,θ՚,z՚), 
Jr(r՚, θ՚,z՚), and Jθ(r՚, θ՚,z՚) ) with sets of coefϐicients to be 
determined.

The contribution of the work is the theoretical consideration 
of the development of the current density components into 
Fourier series in the context of cylindrical coordinates, using 
Bessel functions as development components.

A challenge for future work may be to consider the process 
of regularization and optimization of the coil current and the 
results processed and obtained by the authors in the paper 
[11].

This work inspired questions that would be worth 
answering:
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1. How does the three-dimensional (3D) distribution of 
current within the gradient coil affect scanner performance?

2. What factors affect the distribution of the magnetic ϐield 
generated by the 3D gradient MR scanner coil?

3. What is the relationship between the 3D current density 
and the strength of the resultant magnetic ϐield inside the 
gradient coil?

4. Are there any optimization techniques and methods 
currently in use to achieve an ideal 3D current density 
distribution in MR scanner gradient coils?

In the discussion, we gave answers to these questions, 
but a studious consideration of these insights and answers 
to them is a challenge for some, possible, future work. The 
consideration of very different optimization procedures 
seems particularly complex and, because of this, as well as its 
importance for application, deserves special attention.
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