A quantum mechanical model for hole transport through DNA: predicting conditions for oscillatory/non-oscillatory behavior

Main Article Content

ATM Golam Sarwar
M Rezwan Khan
Arshad Khan*

Abstract

A quantum mechanical model that considers tunneling and inelastic scattering has been applied to explain the hole transfer reaction from a G (Guanine) base to a GGG base cluster through a barrier of Adenine bases, (A)n (n = 1-16). For n = 1, the ratio of tunneling to inelastic scattering is about 6, which is sharply decreased to around 0.23 and 5.23 × 10-8 for n = 4 and 16 respectively, suggesting dominance of inelastic scattering for n ≥ 4. As in experiment, the calculated product yield ratios (PGGG) exhibit a strong distance dependence for n < 4, and a weak distance dependence for n ≥ 4. We also predict conditions under which oscillatory or non-oscillatory charge transfer (CT) yield are expected.

Article Details

Sarwar, A. G., Khan, M. R., & Khan, A. (2020). A quantum mechanical model for hole transport through DNA: predicting conditions for oscillatory/non-oscillatory behavior. International Journal of Physics Research and Applications, 3(1), 046–057. https://doi.org/10.29328/journal.ijpra.1001022
Research Articles

Copyright (c) 2020 Golam Sarwar ATM, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The International Journal of Physics Research and Applications is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by International Journal of Physics Research and Applications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

1. Burrows CJ, Muller JG. Oxidative Nucleobase Modifications Leading to Strand Scission. Chem Rev. 1998; 98: 1109-1152. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11848927

2. Eley DD, Spivey DI. Semiconductivity of organic substances. Trans Faraday Soc. 1962; 58: 411-415.

3. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998; 391: 775-778. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9486645

4. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998; 391: 775-778. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9486645

5. Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science. 2003; 300: 1384-1389. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12775831

6. Kasumov AY, Kociak M, Guéron S, Reulet B, Volkov VT, et al. Proximity-induced superconductivity in DNA. Science. 2001; 291: 280-282. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11209072

7. Khan A. Substituent group effects on reorganization and activation energies; Theoretical study of charge transfer reaction through DNA. Chem Phys Lett. 2010; 486: 154–159.

8. O’Neill MA, Barton JK. DNA charge transport: conformationally gated hopping through stacked domains. J Am Chem Soc. 2004; 126: 11471-11483.

9. O’Neill MA, Barton JK. DNA-Mediated Charge Transport Requires Conformational Motion of the DNA Bases: Elimination of Charge Transport in Rigid Glasses at 77 K. J Am Chem Soc. 2004; 126: 13234-13235.

10. (a) Delaney S, Barton JK. Long-range DNA charge transport. Org Chem. 2003; 68: 6475-6483. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12919006

b) Yoo J, Delaney S, Stemp ED, Barton JK. Rapid radical formation by DNA charge transport through sequences lacking intervening guanines. J Am Chem Soc. 2003; 125: 6640-6641. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12769567

(c) O'Neill MA, Barton JK. 2-Aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA: RNA hybrids. J Am Chem Soc. 2002; 124: 13053-13066. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12405832

(d) Wan C, Fiebig T, Schiemann O, Barton JK, Zewail AH. Femtosecond direct observation of charge transfer between bases in DNA. Proc. Natl Acad Sci USA. 2000; 97: 14052-14055. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11106376

(e) Wan C, Fiebig T, Kelley SO, Treadway CR, Barton JK, et al. Femtosecond dynamics of DNA-mediated electron transfer. Proc Natl Acad Sci USA. 1999; 96: 6014-6019. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26827/

(f) Kelley SO, Barton JK. Electron transfer between bases in double helical DNA. Science. 1999; 283: 375-381. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9888851

(g) Turro NJ, Barton JK. Paradigms, supermolecules, electron transfer and chemistry at a distance. What’s the problem? The science or paradigm? J Biol Inorg Chem. 1998; 3: 201-209.

11. (a) Lewis FD, Liu JQ, Weigel W, Rettig W, Kurnikov IV, et al. Donor-bridge-acceptor energetics determines the distance dependence of electron tunneling in DNA. Proc Natl Acad Sci USA. 2002; 99: 12536 - 12541.

(b) Lewis FD, Liu X, Miller SE, Hayes RT, Wasielewski MR. Formation and Decay of Localized Contract Radical Ion Pairs in DNA Hairpins. J Am Chem Soc. 2002; 124: 14020-14026. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12440900

12. Meggers E, Michel-Beyerle ME, Giese B. Sequence dependent long-range hold transport in DNA. J. Am. Chem. Soc. 1998; 120: 12950-12955.

13. Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling. Nature. 2001; 412: 318-320. https://www.ncbi.nlm.nih.gov/pubmed/11460159

14. Ly D, Sanii L, Schuster GB. Mechanism of charge transport in DNA: internally-linked anthraquinone conjugates support phonon-assisted polaron hopping. J Am Chem Soc. 1999; 121: 9400-9410.

15. Paul A, Watson RM, Wierzbinski E, Davis KL, Sha A, et al. Distance Dependence of the Charge Transfer Rate for Peptide Nucleic Acid Monolayers. J Phys Chem B. 2010; 114: 14140-14148. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19691305

16. (a) Jortner J, Bixon M, Voityuk AA, Rosch J. Superexchange mediated charge hopping in DNA. Phys Chem A. 2002; 106: 7599-7606.

(b) Bixon M, Jortner J. Long-range and very long-range charge transport in DNA. Chem Phys. 2002; 281: 393-408.

(c) Bixon M, Jortner J. Hole trapping, detrapping and hopping in DNA. Phys Chem A. 2001; 105: 10322-10328.

(d) Bixon M, Jortner J. Charge transport in DNA via thermally induced hopping. Am Chem Soc. 2001; 123: 12556-12567. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11741420

(e) Bixon M, Jortner J. Energetic control and kinetics of hole migration in DNA. J Phys Chem B. 2000; 104: 3906-3913;

(f) Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, et al. Long-range charge hopping in DNA. Proc Natl Acad Sci USA. 1999; 96: 11713-11716. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10518515

(g) Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME. Charge transfer and transport in DNA. Proc. Natl. Acad. Sci. USA. 1998; 95: 12759-12765.

17. (a) Berlin YA, Burin AL, Ratner MA. Elementary steps for charge transport in DNA: thermal activation vs. tunneling. Physica. 2002; 275: 61-74.

(b) Berlin YA, Burin AL, Ratner MA. Charge hopping in DNA. J Am Chem Soc. 2001; 123: 2: 260-268. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11456512

(c) Berlin YA, Burin AL, Ratner MA. On the long-range charge transfer in DNA. J Phys Chem A. 2000; 104; 443-445.

(d) Grozema FC, Berlin YA, Siebbeles LDA. Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping. J Am Chem Soc. 2000; 122: 10903-10909.

18. Tong GSM, Kurnikov IV, Beratan DN. Tunneling energy effects on GC oxidation in DNA. J Phys Chem B. 2002; 106: 2381-2392.

19. (a) Li XQ, Zhang HY, Yan YJ. A superexchange-mediated sequential hopping theory for charge transfer in DNA. J Phys Chem A. 2001; 105: 9563-9567.

(b) Zhang HY, Li XQ, Han P, Yu XY, Yan YJ. A partially incoherent rate theory of long-range charge transfer in deoxyribose nucleic acid. J Chem Phys. 2002; 117: 4578.

20. Renger T, Marcus RA. Variable-range hopping electron transfer through disordered bridge states: Application to DNA. J Phys Chem A. 2003; 107: 8404-8419.

21. (a) Conwell EM. Polarons and Transport in DNA. Top Curr Chem. 2004; 237: 73-102.

(b) Conwell EM. Charge transport in DNA in solution: The role of polarons. Proc Natl Acad Sci USA. 2005; 102: 8795-8799.

22. Hatcher E, Balaeff A, Keinan S, Venkatramani R, Beratan DN. PNA versus DNA: Effects of Structural Fluctuations on Electronic Structure and Hole-Transport Mechanisms. J Am Chem Soc. 2008; 130: 11752-11761.

23. Genereux JC, Barton JK. Mechanisms for DNA charge transport. Chem Rev. 2010; 110: 1642–1662. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879062/

24. Adhikary A, Kumar A, Khanduri D, Sevilla MD. Effect of Base Stacking on the Acid-Base Properties of the Adenine Cation Radical in Solution: ESR and DFT Studies. J. Am. Chem. Soc. 2008; 130: 10282–10292.

25. Ptasińska S1, Denifl S, Scheier P, Märk TD. Inelastic electron interaction (attachment/ionization) with deoxyribose. J Chem Phys. 2004; 120: 8505. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15267776

26. Khan A. Reorganization and activation energies for hole transfer processes in DNA: a theoretical study. J Chem Phys. 2008; 128: 075101-6. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18298173

27. Senthilkumar K, Grozema FC, Guerra CF, Bickelhaupt FM, Lewis FD, et al. Absolute Rates of Hole Transfer in DNA. J. Am. Chem. Soc. 2005; 127: 14894-14903. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16231945

28. Yildiz A, Kasap M. The temperature dependence of the inelastic scattering time in InGaN grown by MOVPE. Low temp. Phys. 2010; 36: 320.

29. Santhanam BP, Prober DE. Inelastic electron scattering mechanisms in clean aluminum films. Phys Rev B. 1984; 29: 3733.

30. Khondker AN, Khan MR, Anwar AFM. Transmission line analogy of resonance tunneling phenomena: The generalized impendance concept. J. Appl. Phys. 1988; 63: 5191.

31. Haque A, Khondker AN. An efficient technique to calculate the normalized wave functions in arbitrary one-dimensional quantum well structures. J Appl Phys. 1998; 84: 5802.

32. Khan A. Effect of guanine-cytosine base pair orientation and cluster size on ionization energy and charge distribution: A theoretical study. Computational & Theoretical Chemistry. 2014; 1047: 67-70.

33. MATLAB, The Math Works, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098, USA.

34. Giese B, Spichty M. Long distance charge transport through DNA: Quantification and extension of the hopping model. Chem Phys Chem. 2000; 1: 195-198.

35. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988; 38: 3098-3100. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9900728

36. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993; 98: 5648-5652.

37. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti conelation energy formula into a functional of the electron densitya. Phys Rev B. 1988; 37: 785-789. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9944570

38. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980; 58: 1200-1211.

39. (a) Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985; 811: 265-322.

(b) Bolton LB, Archer MD. Basic Electron-Transfer Theory In ET in Inorganic, Organic & Biological Systems, Advances in Chemistry Series. 1991; 220: 7-23.

40.May V, Schreiber M. Density-matrix theory of charge transfer. Phys Rev A. 1992; 45: 2868.