Non-force electromagnetic fi elds in nature and experiments on earth: Part 2

Main Article Content

VV Aksenov*

Article Details

Aksenov, V. (2020). Non-force electromagnetic fi elds in nature and experiments on earth: Part 2 . International Journal of Physics Research and Applications, 3(1), 075–114. https://doi.org/10.29328/journal.ijpra.1001026
Research Articles

Copyright (c) 2020 Aksenov VV.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The International Journal of Physics Research and Applications is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by International Journal of Physics Research and Applications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Chandrasekhar S. On force-free magnetic fi elds. Proceedings of the National Academy of Sciences of the United States of America. 1956; 42: 1–5.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC534220/

2. Van Vleuten A. Over de dagelijsche variatie van het Ardmagnetisme. Koninklijk Ned. Meteor. Instit. No. 102, Utrecht. 1917; 5–30.

3. Benkova NP. Solar Diurnal variations of Terrestrial Magnetism. The Hydrometerological service of USSR Transactions of Scientifi c Institutions.

Terrestrial Magnetism. Series VI. L.-M.: 1941; 75.

4. Aksenov VV. Toroidal fi eld in the Earth’s atmosphere. Novosibirsk. Russian Academy of Sciences Siberian Branch. 1997; 133.

5. Parker EN. Cosmical Magnetic Fields. Clarendon Press Oxford. 1997; 1: 608; 2.

6. Moff at HK. Generation of magnetic fi eld in conducting medium. Cambridge University Press. 1978; 339.

7. Aksenov VV. On three Kinds of Electrodynamics on the Earth and in Space. The Way of Science. 2017; 7: 8–15.

8. Larmor J. How could a rotating body such as the Sun become a magnet. Rep Brit Assoc SCI. 1919; 60 –159.

9. Aksenov VV. The Toroidal Decomposition of the Vector Potential of a Magnetic Field and its Applications. Moscow University Physics Bulletin Physics

of Earth, Atmosphere and Hydrosphere. 2015; 70: 558–565.

10. Aksenov VV. The Earth’s Electromagnetic Field. – Novosibirsk. Inst. Of Math and Math. Geophysics. 2010; 268.

11. Aksenov VV. On mutual generation of magnetic fi elds in tokamaks and its suppression. Russian Phy J. 2018; 61: 171-172.

12. Aksenov VV. Non-Force and Force Electromagnetic Fields. Russian Phy J. 2016; 59: 319-327.

Aksenov VV. Adaptation of Maxwell-Parker-Moff at Electrodynamics to Electromagnetic Fields Observed in the Earth’s Atmosphere. Russian Phy J.

2017; 60: 389-398.

14. Stratton J. Ad. Electromagnetic Theory. Mc. Graw-Hill Book Company. New York and London. 1941; 539.

15. Marsh GE. Force-Free Magnetic Fields: Solution, Topology and Applications. Singapore: World Scientifi c Publishing Go. PTL. Ltd. 1966; 157.

16. Cowling TG. Mgnetohydrodynamics. John Willey and Sons. New York. 1957; 139.

17. Yak Z, Rusmikin A, Socoloff D. Magnetic fi eld in astrophysics. Gordon and Breach, New York. 1983; 483.

18. Alfven H. Cosmical Electrodynamics. Oxford: University Press. 1950; 240.

Korn GA, Korn TM. Mathematical Handbook for Scientist and Engineers Defi nitions, Theorems and Formulas for Reference and Review. McGaw-Hill

Book Company, INC, New York Toronto London. 1961; 720.

20. Tikhonov AN, Samarsky AA. Equations of Mathematical Physics. M.: Nauka. 1972; 735.

21. Gauss KF. Allgemaine Theorie des Erdmagnetismus. Werke. 1838-1839; T5, S. 119.

22. Gauss KF. Allgemaine Lehrsatze in Beziehungauf die in verkehrten verhaltnisse des Quadrats der Entferung wirkenden Anziehung und

Abstossungkrafte. Werke. 1839-1840; T.4, S. 195.

23. Schmidt A. Besitzt die tagliche erdmagnetische Schwankung in der Erdoberfl ache ein Potential. Physik. Zeitschrift. 1918; 19: 349–355.

24. Aksenov VV. On Some Solenoidal Vector Fields in Spherical Domains. Diff erential Equations. 2012; 48: 1042 – 1045.

25. Aksenov VV. On Methodology and Methods of Applied Geomagnetism. Geology and Rasvedka. 2016; 50–55.

26. Parkinson WD. Introduction to Geomagnetism. Scottish Academic Press. Edinburg and London. 1983; 520.

27. Yanovsky BM. Telluric Magnetism. Leningrad: GITTL. 1978; 591.

28. Gauss RF. Isbrannie trudi po semnomu magnetismu. L: Izd AN SSSR. 1952; 343.

29. Chetaev DN. O structure polya korotkoperiodicheskoy geomagnitnoy variazii and magnitotelluricheskom sondirovanii. Physics of the Earth.1970;

52–55.

30. Sokolov DD, Stepanov PA, Frik PG. Dinamo na puti ot astrophisicheskih modeley k laboratornomu experimentu. UFN. 2014. 184: 313–335. PubMed:

31. Aksenov VV. Modeling of a Magnetic Field of Sources Localized within a sphere and beyond. Mathematical Modeling. 2015; 27: 111–126.

32. Aksenov VV. The Foundations of Geomagnetism. Bulletin of the Novosibirsk Computing Center. Series: Mathematical Modeling in Geophysics.

Special Issue: 15. 2012; 100.

33. Stern DP. Representation of magnetic fi eld in Space. Rev. Geophys. 1976; 199 – 214.

34. Tikhonov AN, Arsenin B. Ya. Metody resheniya nekorreknih zadach. Nauka. 1974; 223.

35. Aksenov VV. Ob Istochnike Glavnogo Geomagnitnogo Polya. Part 2. Geologiya and exploration. 2012; 54-60.

36. Moore EH. General analysis. Memoirs Phi Soc. 1935; 1-231.

37. Penrose R. A Generalized inverse for matrices. Proc. Camb. Phil. Soc. 1955; 51: 406–413.

38. Geller RJ, Jackson DD, Kagan YY, Mulagria F. Earthquakes Cannot be Predicted. Science. 1997; 1616–1617.

39. Alekseev AS, Aksenov VV. Ob electricheskom pole v ochagovoi zone zemletryasenii. DAN. 2003; T. 392: 106–110.

40. Aksenov VV. O modelirovanii and assessment electromagnitnih and teplovih polei kak predvestnikov semletryasenii. Geofi sisheskii J. 2003; 25:

20–25.

41. Rabotnov JH, Lomakin EB. Sootnosheniya teorii uprugosti dlya isotropnogo raznomodulnogo tela. AN SSSR. MTT. 1978; 29–34.

42. Lyahovskii VA, Myasnikov BG. O povedenii uprugoi sredi s micro-narusheniyami. Fizika Zemli. 1984; 71–75.

43. Ustundag B, Ozerden S. Erthquake prediction using a new monopolar electric fi eld probe. European Seismological Congress (ESC 2002). Genoa.

2002.

44. Aaronov V, Bohm D. Signifi cance of Electromagnetic Potentials in the Quantum Theory. Phys Rev. 1959; 115: 485–491.

45. Chirkov AG, Ageev AH. O prirode eff ecta Aaronova-Bohma. JTF. 2001; 71: 16–22.

46. Azizov EA. Tokamaks from A.D. Sakharov to nowadays (the 60 year tokamak history). UFN. 2012; 182: 202–215.

47. Dyrdin VV, Elkin IS, Lozhkin KV, Sosnov FS. Magnitnoe pole tokov smeshcheniya. Vestnik of Kuzbass State Technicfl University. 2004; 5: 36–37.

48. Bullard EC. The magnetic Field within the Earth. Proc Roy Soc Lond. 1949; 433–453.

49. Rikitaki T. Electromagnetism i Vnutrennee stroenie Zemli. M.: Nauka. 1968; 236.

50. Aksenov VV. Non-force electromagnetic fi eld. Int J Phy Res Applic. 2020; 20–45